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Abstract 

A gauge-invariant nonlinear Hodgede Rham system is introduced. These equations have the 
same relation to the Yang-Mills equations that the conventional nonlinear Hodge equations have 
to the equations of classical Hodge theory. Conditions are given under which weak solutions are 
locally HGlder continuous. The existence of solutions is proven for variational points of a certain 
class of nonquadratic energy functionals. 
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1. Introduction and statement of the results 

There are many well-known examples of variational problems on manifolds, but so far 
research into variational problems on fiber bundles seems to have been restricted mainly 
to the study of the Yang-Mills equations and other variational points of quadratic en- 
ergy functionals. There is a natural way to construct a class of variational points of non- 
quadratic functionals which includes the Yang-Mills equations-as well as other interesting 
equations-as special cases. This is to extend the nonlinear Hodge equations, originally de- 
fined for Riemannian manifolds, to vector bundles. 

The nonlinear Hodge equations [ 12,141 are systems of the form 

dw = 0, S(P(Q)W) = 0. (1.1) 

Here o E r(M, Ap(T*M)) is a section of the pth exterior power of the cotangent bundle 
of a compact n-dimensional Riemannian manifold M; d : Af’ -+ Ap+’ is the flat exterior 
derivative on p-forms; 6 : A” + AP-’ is the formal adjoint of dj: 
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Q = Q(w) = *(w A WI) = (w,w); 

* : AJ’ -+ An-J’ is the Hodge involution; ,o : k!+ + [w+ is a bounded Ct-function 
satisfying 

0 < P’(Q) + WQb’(Q>Q < 00 (1.2) 

for Q < Qc 5 co. 
The equations 

~(P(Q)o) = 0 

are the Euler-Lagrange equations for the energy functional 

Q 

EM(W) = ss p(t) dt dM> 
MO 

where dM is the volume form on M. Thus solutions of (1.1) are critical points of EM(W) 
with respect to an appropriate cohomology class of admissible forms. 

Eqs. (1.1) generalize the linear equations of classical Hodge theory 

dw = 0, 6w = 0. 

For this reason Eqs. (1.1) are said to yield a nonlinear Hodge theory. 

(1.3) 

Here we consider the effect on the theory of requiring critical points of EM(W) to possess 
certain symmetries which can be represented as invariance under the action of a compact 
Lie group G. In this case we imagine that o takes values in the Lie algebra associated with 
the structure group of a vector bundle X over M. The fiber of the adjoint bundle Ad(X) 
is the Lie algebra K of G. The fiber of the automorphism bundle Aut(X) is the group G 
itself. If A is a connection on X with curvature FA, then A has a local representation as a 
K-valued 1 -form with curvature 

where [ , ] is the Lie bracket on E-valued forms. These objects will be invariant under the 
action of sections g E f (Aut (X)), called gauge transformations. Such maps act on the Lie 
algebra by conjugation. If G is compact, then they can be taken to be unitary. In fact, we 
assume that G c SO(L). Then the trace inner product metric on SO(L) induces a metric 
on G. 

Under this construction critical points of EM( FA) will satisfy the system 

DAFA = 0, D;(P(Q)FA) = 0, (1.4) 

where DA = d + [A,] is the exterior covariant derivative with formal adjoint Di and 
Q = ( FA, FA). Eqs. (1.4) yield a doubly nonlinear Hodge theory, in which in addition to 
the nonlinearity in FA represented by the coefficient p (Q), the flat derivatives d and 6 of (1.1) 
have been replaced by bundle operators DA and Di which depend on the connection A. 
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condition can be weakened, by applying for example arguments analogous to those in [ 111 
or in Section 7 of [2]. In Sections 3 and 4 we prove: 

Theorem 1.1. Let M be a bounded open type-A domain of W. Let FA be a weak solution 
to Eqs. (1.4) on a bundle X over M for p( Q( FA)) satisfying 

0 < K I P*(Q) + WQ)d(Q)Q I iv < ~0 (1.5) 

for constants K and N. Suppose that FA E L ’ (M) for some P > in. Then FA is equivalent 
via a continuous gauge transformation to a Hiilder continuous solution of (1.4). 

The definition of type-A domains is reviewed in Section 2. The Lp and Holder spaces 
for FA are defined in the standard ways: 

If u E T(M, Ad(X) @ A’(T*M)), then 

Ilull LP(M) = (*Tr(u A *II)] pi2dM)” = (/(u,ujp-2dM)“p, 

where ( , ) denotes the inner product on Ad(X) @K induced by the metrics on M and G. 
We say that FA E C’%?‘(M) if each of its components are. 
Well-known arguments (e.g., [9]) similarly yield Sobolev spaces of Lie algebra-valued 

sections. 
The proof of Theorem 1.1 would not change essentially if the connection A were replaced 

by an arbitrary p-form 8 on M for which 

F,- = d8 + [A, E] and DA F,- = 0. 

In fact this would result in a considerably easier problem, since Eqs. (1.4) would no longer 
be strongly coupled in DA and 0:: these operators would be linear in E. 

Henneaux and Teitelboim [3] have developed a gauge theory for electromagnetism in 
which the gauge potential A is replaced by an arbitrary p-form. In order for the system to 
be located in space-time the gauge group must be U(l), an abelian group. In this case the 
Lie bracket vanishes and FA = dA. In this system the Yang-Mills equations reduce to the 
Hodge equations and our system (1.4) would reduce to (1.1). If in (1.1) we choose p = 0 
and 

p(Q) = 1 _ +4*)“(y-” ( (1.6) 

for y > 1, then the system is identical to the equations for the stationary polytropic flow w 
of a compressible fluid [ 121. If ]w] -C $(y - l), then the flow is said to be subsonic. 

Using different arguments from ours, Luckhaus [4] has studied the higher regularity of 
minimizers of the Lp norm of the gradient of a map between Riemannian manifolds (see 
also [2] and the references therein). As we remarked in connection with the regularization 
question, a minimizing hypothesis is not appropriate to solutions of (1.4) due to the absence 
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of well-defined boundary-value problems and the fact that p(Q) does not in general define 
a Hilbert space of finite-energy connections. 

For similar reasons we impose an Lp hypothesis on the solution instead of defining an 
admissible class of finite-energy connections. However, finite-energy solutions will satisfy 
the Lp hypothesis if the function p is chosen appropriately. For example, let 

P(Q) = WI2 + I~AI~)~--I~ 

where (Y > $n. Then 

(1.7) 

This functional is Palais-Smale, so the existence of weak solutions to (1.4) in this case 
follows from standard variational theory [ 8,9]. Moreover, p2 (Q) +2p (Q)p’( Q) Q is positive 
for all values of Q provided o > 4. Finally, the admissible class of finite-energy connections 
lies in a defined Sobolev space. 

Fix an arbitrary smooth base connection DO. Then a connection is admissible with respect 
to (1.8) [i.e., has finite energy (1.8)] if it is an element of the set of connections 

(D=Do+AIAEH 1*2a(M, Ad(X) @ T*M)]. 

Since FA = dA + A A A, the curvature FA of an admissible connection A satisfies FA E Lp 
for P > in. 

The functional described in (1.8) will satisfy the conditions of Theorem 1.1 provided we 
restrict u to the interval (in, 11, which implies that 2 5 n < 4. In this case we have a local 
existence theorem. 

Corollary 1.2. Let M be dejned as in Theorem 1.1 for n -C 4. Then the functional Eh ( FA ) 
dejined by ( 1.8) possesses Hiilder continuous critical points whenever cx E (an, 11. 

The functional of Eq. (1.8) has a potential physical interpretation as the (nonquadratic) 
energy of a pure Yang-Mills field. A qualitatively similar model for higher dimensions 
already exists in the physics literature; see [17] and the references therein. Notice that 
although the existence theorem (Corollary 1.2) does not apply to the functional (1.8) when 
n 1 4 or 01 > 1, the regularity theorem (Theorem 1 .l) does apply. 

If n > 4, then a hypothesis of finite Yang-Mills energy (EM( FA) < 00 for p = 1) is not 
sufficient to guarantee the condition FA E LPforP > in. Some regularity can be shown 
under the assumption that the Yang-Mills energy is small outside of a prescribed singular 
set or that FA E Lp for P = in (see [ 151 for dimension 4 and [7] and the references therein 
for higher dimensions). It is not clear how applicable such arguments would be to solutions 
of Eqs. (1.4). 

Essentially for notational convenience, we restrict our attention in the subsequent argu- 
ments to the case n > 2. Thus we avoid considering the special case of the two-dimensional 
Sobolev Theorem, for which the relevant inequalities actually become stronger. 
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2. Background of the proof 

The idea of the proof of Theorem I. 1 is to show that solutions of (1.1) and ( 1.4) are close 
when considered as points in an appropriate space. We then apply the following regularity 
result for solutions of (1.1). 

Theorem 2.1 (Sibner [ 111, Section 3, Remark 3 and Section 4, Theorem 4.1). Let o be a 
weak solution of( 1.1) on A4 with p sati&@ (1 S). Then w E Co,/1 (M) for some p > 0. 

In comparing systems (1.1) and (1.4), we use a mean-value formula which is essentially 
Lemma 1.1 of [ll]: 

Lemma 2.2 (cf. Sibner [ 111, Lemma 1.1). Let 

J(x,v) = P(Q(v)N(x). 

Then under the assumptions of Theorem 1.1 

J(‘$,P) - J(B,V) = H(CL - u) + K(C - rl), 

where H is a positive-dejinite matrix with$nite entries and 

IRI I C(IP(X)I + 14x)1). 

The proof of Lemma 1.1 of [ 111 is identical to the proof for Lie algebra-valued sections. 
The ~5.’ assumption of Theorem 1.1 allows us to apply standard results on the existence 

of good gauges. 

Theorem 2.3 (Uhlenbeck [16], Theorem 1.3). Let X = B” x l@,G c SO(L),2P 2 n, 
D=d+AforriEH*,P(B”,[WL~~).Then3K(n)>Oandc(n)<oosuchthatif 

then D is gauge equivalent by an elements E H2,’ (B” , G) to a connection d + A, where 
A satisjies 

&A=O, IIAIIHIJ I W)lI~ll~~. 

The gauge whose existence is guaranteed by Theorem 2.3 is called a Hedge gauge. 
Another useful gauge is the exponential gauge. In the unit n-disc BI (0) centered at the 

origin of coordinates in [w” this gauge is defined by the conditions A, = 0 and A = 0 at 
the center of the ball. (Here r denotes the radial component.) In such a gauge we have a 
pointwise estimate 

See [ 151 for details. 
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If FA E Lp for P > in, then the gauge transformation s in Theorem 2.3 is continuous 
by the Sobolev Theorem and the gauge fixing preserves the topology of X. Thus we can fix 
a gauge and understand the notion of a weak solution of Eqs. (1.4) in the usual sense. 

The proof given in the next sections relies on two well-known results from elliptic theory. 
We review them here. 

A bounded domain Q of 58” is said to be of type A if Vx E R and R E (0, dium Q) there 
exists a constant A > 0 such that diam(f2 fl BR(x)) > AR”. As an example, any Lipschitz 
domain satisfies this requirement. 

Definition 2.4. Let Sz be a bounded connected open set in R”. A function f E LP(Q), 
P > 1 is said to be an element of the Campanato space Cp.’ if 1 > 0 and 

sup 
+~~eSZ. Ocrcdiam Q r 

-1 
s 

If - (f)r,xolP * 1 < m. 

Qn&(X) 

Here 

1 

(f)rJ = ]&.(x)1 s 
f *l. 

B,(x) 

The space Cf.’ is a Banach space under the norm 

I 
l/P 

llfllLp~‘(R) = llfllLp(Q) + 
s 

If(x) - (fhlP * I 3 

& 0 ) 

where P 2 1,l 2 0. 
For the properties of these spaces see Chapter 3 of [ 11. However, the following property 

is crucial. 

Theorem 2.5 (Campanato [ 11, Theorem III. 1.2). Zf G’ is a type-A domain and n < I 5 
n + P, then the space Cp,’ (a) is isomorphic to the space C”,y(f2) with y = (1 - n)/ P. 

Denote by T(Q) the topological space of real functions on 0 and consider the product 
of m copies of T(a) in the natural topology. Clearly the notion of Campanato spaces and 
the conclusion of Theorem 2.5 extend to this space of vector-valued functions. In fact, one 
can by standard arguments extend these ideas to spaces of Lie algebra-valued sections with 
components in an appropriate L p space. 

In order to estimate the Holder norm of FA it will first be necessary to show that FA is 
bounded. This will eventually follow from a classical result due to Morrey. 

Theorem 2.6 (Morrey [6], Theorem 5.3.1). Let u E H’,*(Q), u > 0, and define u = u* 
for h E [ 1,2). Suppose that v satisfies 
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V{ E Cow(s2),(- > 0, where aij are bounded measurable functions, bj E L’(a) for some 
S > n and f E L’(Q) for some P > in. Also assume that the matrix aij satisjies for 
some positive constants ~1, v2 the elliptic@ condition 

V11C12 5 aij&tj I V21!12. 

Then for any x E B,(xo) E 1;2 we have 

lu(x)12 5 Ca-” 
s 

u2(y) d”y. 

Bp+u ho) 

3. An Loo bound on curvature 

In this and the next section we prove Theorem 1.1. 
We perform the initial regularity estimates in B2, where BR is the n-disc of radius R 

centered at the origin of coordinates in R”. We assume that on B2 the fiber X, of X satisfies 
X, 2: RL. We denote by C generic positive constants the values of which may change from 
line to line; x always denotes an n-vector. 

The first step is to prove that I FA I is bounded. Our method is to show that we can apply 
Theorem 2.6. 

Let FA be a classical solution of (1.4). We show that the scalar u(x) = Q(x) satisfies a 
subelliptic inequality. 

Let p satisfy the hypotheses of Theorem 1.1. Letting Q = I FA I2 and writing p( FA) as a 
function of Q we have [cf. [ 131, Eq. (1.2)] 

+MQ)FA,P(Q)FA) 

= -~(A(P(Q)FA),P(Q)FA) + lW(Q>h)12> (3.1) 

where A denotes the flat Laplacian on differential forms. Since FA satisfies (1.4) we have 

= --((ad + W(dQ)FA),P(Q)FA) 

= -W(p(Q)F,d,p(Q)FA) + (d * [A, * (P(Q)FA)I,P(Q)FA). (3.2) 

Substituting (3.2) into (3.1) yields 

+(P~(Q)Q) + 2(WP(Q)FA)>P(Q)) 
= IV(P(Q>FA>I~ + (d * [A, * (P(Q)FA)I,P(Q)FA). 

The principal part of (3.3) 

L(Q) = -~A(~(Q)FA,~(Q)FA)+~(~~(~(Q)FA),~(Q)FA), 

(3.3) 
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has the property that -L(Q) is a uniformly elliptic operator on Q. (For a proof of this 
statement see [ 13, Proposition 1.11.) We can neglect the nonnegative term and write (3.3) 
as the inequality 

L(Q) L -C(IAI(V(P(Q)FA),P(Q)FA) + lVAlQp2(Q)). 

But 

(V(~(Q)FA),~(Q)FA)LI~'(Q).(~Q)Q~(Q)+~~'(Q). VQI 

L l;b2(Q) + ~P(Q)P’(Q)Q)VQI i ;A’lVQl. 

We can write condition (1.5) in the form 

0 -=c $(Q . p2(Q)> i N. 

Integrating (3.4a) over Q yields, for a possibly different value of N, 

p2(Q) i N. 

Thus we obtain an inequality for Q of the form 

L(Q) 1 -C(N,p){lAlIVQl+ IVAIQI. 

Writing 

-L,(Q) = a@& 
where 

we can write (3.5) in the weak form 

s 
B 

~i’~~+C(lAl(,~~,+lVAIQ~~ d”xLO. 

(3.4a) 

(3.4b) 

(3.5) 

(3.6) 

Here < E C?(B), < ? 0. 

Lemma 3.1. Under the hypotheses of Theorem 1.1, FA E H 1,2 (B312) provided II A II LIZ (B? 1 

and IIFAIIL,~~~~B~~ are sufJiciently small. 

ProoJ: The idea of the proof is to use difference quotients in order to obtain an integral 
estimate on the gradient of FA. 

Use Theorem 2.3 to make a continuous gauge transformation in B2 to a Hodge gauge. 
Writing Eqs. (1.4) in a weak form, we obtain for any admissible test function 1c/, 



388 T.H. Otway/.loumal of Geometry and Physics 19 (1996) 379-398 

(3.7) 

But if $(x) is admissible, then so is l&(x-hei), where ei is the ith basis vector, i = 1, . . . , n, 
and h > 0. Thus 

J 

B2 

=- s (*[A(x), 
B2 

* p(Q(x))F(x)l, VW - hei)) 8.x. 

Lety=x-hei;wehave 

J 
@(Q(Y + hei))F(y + hei), d@(y)) d”y 

B2 

=- 

s 
(*[A(Y + hei), * P(Q(Y + k))F(y + hei)], ~C/(Y>) d”y. 

B2 

(3.8) 

Subtracting (3.7) from (3.8) (expressing both integrals in terms of the dummy variable x) 
and dividing both sides by h yields 

k 
s 

(b(Q(x + hei))Fb + hei) - p(Q(x))F(x)J,dlCr(x)) 8.x 
B2 

= -k /(*[a(~ + hei), * p(Q(x + k))F(x + hei)], @l(x)) d”x 

B2 

+ J (*[A(x), * ~(Q(x))F(x)l, W>) d”x. 
82 

The right-hand side of (3.9) is equal to 

- I (*[Ai,hA, * P(Q(x + hei))F(x + h>l, 1c/(x)) d”x 
B2 

- 

B2 

*~(Q(x + hei))F(x + hei) 

h 1 ) ,@(x) d”x 
+ 

B2 

*P(Q(x))F(x) 
h 1 ) v+(x) d”x, 

(3.9) 

(3.10) 
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where 

Ai,h/A G 
U(X + hei) - U(X) 

h . 

Substitute (3. IO) into the right-hand side of (3.9) and then apply Lemma 2.2 to the differences 
on each side of (3.9), taking t = x +hei, q = x, p = F(x + hei), and v = F(x). We obtain 

s ((H. Ai,hF + K),d+)d”x 
& 

=- s ([Ai,hA, * P(Q(x + hei))F(x + hei)], t!‘(X)) d”x 
B2 

- s (*[A(X), * (H . Ai.hF + K)lt q(x)) d”x. 
B2 

Now 

(3.11) 

A ,  

l,h 
F  =  F(x + hei) - f’(x) 

h 
dA(x + hei) - dA(x) 1 

= 
h 

+ ~[A(x + hei), A(x + hei) - k[A(x), A(x)1 

= Ai,h(dA) + i[A(x + hei) - A(x) + A(x), A(x + hei)] - ~[A(x), A(X)] 

= Ai.h(dA) + [Ai,hA, A(x + hei) + [A(x), Ai.hAI. (3.12) 

The function $ = [Ai,hA is an admissible test function if { E C?(B) and (‘(x) = 1 for 
x E B3/2, where c(x) > Otlx. Then, using (3.12), we have from (3.11) 

(H . {Ai.h(dA) -I- [Ai,hAt A(x + hei) + [A(X), Ai,hAIJ, t d(A;.hA)) 8-x 
B2 

+ 
s 

(K, { d(Ai,hA)) d”x 

B? 

=- 

s 
([Ai.hA, * P(Q(x + hei))F(x + hei)I,CAi.hA) d”x 

82 

- 
s 

(*[A(X), * (H . {Ai,/z(dA) + [Ai,hA, A(x + k)l 
B2 

+[A(x)t Ai.hAl) + K)I, 5Ai.hA) dnx 

- 
s 

((H . {Ai,h(dA) + [Ai,hAt A(x + he;)1 
B2 

+[A(x), Ai.hAII + K), (Ai.hA)dS) d”x (3.13) 



390 ZH. Otway/Journal of Geometry and Physics 19 (1996) 379-398 

Here 

0<tY1~H(62<oo (3.14) 

and 

IKI 5 C(IF(x + hei)l + IF(X) (3.15) 

Using inequalities (3.14), (3.19, (3.4b), and the fact that d commutes with Ai,h, we have 

6 tIAi.h(dA)l*d”x 
s 

B2 

5 C@2,N,maxIVCI) 
s 

(IAh + k)l + IA(~)l)lAi,~AllAi,h(dA)I d”x 

B2 

+ 
s 

(IF(x + heill + IF(x)l)lAi,h(dA)I d”x 

B2 

+ s IAi,hA121F(~ + hei) d”x 
B2 

+ s (IA( + l)lAi,h(dA)llAi,hAl d”x 
B2 

+ s (IA(x)l + l)lAi./zAl*(lA(x + h)l + IA(x d”x 
B2 

+ 
s 

(IF(x + h)l + IF(x>l)lAi,hAl d”x 

B2 

(3.16) 

Label the six integrals on the right-hand side of (3.16) as It, 12, . . . , 16, respectively. We 
estimate these integrals individually. 

Let E be a small positive constant. Young’s inequality implies that 

11 I C(t) s (IA(x + hei) + IA(x)l)21Ai,hA12dnx + ??s lAi,dW12dnx 

B2 B2 

I C(E) (IA6 + k)l + IA(x>l)” d” x) 2’n (1 IAi,hA,2n,(n-*) dflx) (n-2)‘n 

+E IAi,/JdA)12d”x. 
s 

B2 

Applying the Minkowski, Young and Sobolev inequalities to the right-hand side of the 
estimate, we obtain 
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11 5 C IIA(x + hei)l/~n(~2~ + IIA(x)ll~n(~2~ ( i 

X 

c 
s 

IV(Ai,hA)l*d”x+ 
s 

+t IAi,h(dA)1*d”.x, (3.17) 
s 

B2 B2 B? 

using the fact that 

s IVlAi,hAll* d”x 5 
s 

IV(Ai,hA)l*d”X. 

B? B2 

The Gaffney-Girding inequality yields 

s 
IV(Ai,hA)l*d”x 5 C 

i 
s 

IAi,h(dA)l* d”x + 
s 

lAi.hA12dnx . (3.18) 

B? B2 B2 

In (3.18) we have used the fact that d and 6 commute with A,.h and SA = 0. Substituting 
(3.18) into (3.17) yields an estimate for II. 

12 i C(C) s (IF(x + hei) + IF(x)/)* d”x + E s IAi,h(dA)I* d”x: 

B> 82 

13 5 (1 lAi,~Al*“‘(“-*) dnx)‘nP2”n (l IF(x + hei)l”‘* d”x)*“’ 

i CIIF(x +hei)11L”/2(B2) IVlAi,hAl12 d”x + lAi.hAl* d”x 
s 
BZ 

apply (3.18) to get an estimate similar to that obtained for It, but with coefficients involving 
the L”/*-norm of F(x + hei) rather than the Ln-norms of A(x + hei) and A(x). 

14 5 C(c) 
s 

(IAl + l)*~Ai,~A~* d”x + t 
s 

IAi.&4)12 d”x, 
B2 B2 

so I4 can be estimated by essentially the same argument that was used in estimating II. The 
presence of the number 1 in the first integral on the right in the estimate of I4 is harmless, 
as A E H’,*(B,p). The estimation of Is is similar to that of It and 14, since 

15 I 
s 

(IA(x + he;)1 + [A(X) + l~)*~Ai~~A~* d”x. 

B2 
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(lF(x + hei)l + lFtx)1>2 @x) “2 (1 lAi.hAi2dnx) “2. 

With the aid of the above estimates we absorb small terms on the left in (3.16), using the 
hypotheses on the L”-norm of A and the L”12 -norm of F on B2. We obtain, since FA E 

L’(B2) and A E Hi9P(B2) for P > in by hypothesis and by Theorem 2.3, respectively, 

s 
IAi,h(dA)12 d”x 5 C < 00. 

8312 

Letting h tend to zero and summing over i = 1,2, . . , it, we have dA E H’.2(B3,2). But 

s IVFA~~ * 15 
s 

IV(dA)12 * 1 + 
s 

IV(A A AlI2 * 1 

and 

s 
IW12M12 * 1 I llAll~nllWl~2,,~,-2,. 

The first norm on the right can be seen to be finite by applying Theorem 2.3 and the Sobolev 
Theorem. The second norm on the right is manifestly finite for n L 6. Otherwise, write 

IIVAl12 L2n/(n+2) i C (llW~lll~2 + lWll~2) 

An argument similar to (3.18) yields 

IjV’4~l:2 i C (llWN~2 + IlWl’L2). 

Notice also that V commutes with d in the above inequality (possibly taking a mollification 
limit of the components of A) and that 

s 
IVldAl12 * 1 _( 

s 
IV(dA)12 * 1 < co. 

This completes the proof of Lemma 3.1. 0 

The hypotheses on the L”-norm of A and the L”i2-norm of FA can always be satisfied 
locally by a conformal transformation that leaves (1.4) invariant. 

We are not yet in a position to invoke Theorem 2.6 and conclude that the Leo-norm of 
FA is bounded. We could do this via Lemma 3.1 and inequality (3.6), letting v = Q, if we 
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could take the constant h in Theorem 2.6 to be equal to 2, but h is required to be strictly 
less than 2. The following lemma is intended to overcome this problem. 

Lemma 3.2. Under the hypotheses of Theorem 1.1. I FA I5 E H I.‘( B~/J) ,fiw some r > I. 

Proc# We can write (3.6) in the form 

2 
s 

au at 
a’j~-~ d”x 5 CN 

s 
lAh4lVul[ d”x + 

s 
IVAlu’< d”x , 

ET.2 h? Rvz 1 

where u = / FA I and < E C(y(B3,2), < > 0. Choose 

< = (Uk + 45?-‘?+ 

for q E Cr( B3/2), q > 0,6 > 0,~ > 1. The sequence {uk] is chosen to be increasing and 
so that limk,, Uk = u. We have 

s dj,(,k + 6)2T-“vu v(Uk)q2 * 1 

B?!Z 

I Cl (u2, r) 
s 

ulVul(Uk + 6)25-2qIVn/ * 1 

&I? 

IAlulVul(uk + 6) 2r+12 * 

+Cj(N) IVAlU’(uk + 6) 

We can bound the right-hand side of (3. 9) by the number 

C(N, ~2, r, 17, Vq) 
s 

(IAl + 1 
312 

(u + 6)*r-‘Ivul * 1 + 
s 

~VAI(U + 8)” * I 

Bj ,z 

(3.19) 

(S > 
IlYl 

il I IllAl + Up, (u + 6) Q-l)41 IVu(Yl * 1 

2rpI 
5 IIIA + 1 lip, Ilu + ~ll~2r-,~q,pz IIVullq,qz: 

1 I43 
iz I IIVAllp, (u + Sp * 1 

> . 
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Choose pl = n and p2 = 2(n - l)/(n - 2). If n > 6, choose p3 = in. If n 5 6, choose 
p3 = 2n/(n - 2). In each case choose qi to be the conjugate of pi. If n > 6, choose 
r > 1 so that 2n(2r - l)/(n - 2) < P for P > in. If n ( 6, choose r > 1 so that 
2n(2t - l)/(n - 2) ( P for P > 2n/(n - 2). The resulting norms are seen to be finite 
under the hypotheses of Theorem 1.1 by applying the Sobolev Theorem to Lemma 3.1 and 
to the inequality of Theorem 2.3. 

Use Fatou’s Lemma to let k tend to infinity in (3.19); let 6 tend to 0. Then we can replace 
(3.19) by the inequality 

The proof of Lemma 3.2 is completed by letting n = 1 on B5/4. 0 

Now apply Theorem 2.6 in Bs/4, taking u = IFA l5 and using (3.6). The coefficients IAl 
and IVAl in (3.6) can be seen to satisfy the hypotheses of Theorem 2.6 by applying the 
Sobolev Theorem to the inequality of Theorem 2.3. We have proven: 

Theorem 3.3. Under the hypotheses of Theorem 1.1, 1 FA I is bounded on the unit n-disc 
in M. 

4. The Hiilder continuity of the connection 

In this section B denotes the unit n-disc centered at the origin of coordinates in KY. 
Consider a l-form $J satisfying (1.1) in the sense that 

S(/dQ( @I) WI = 0, (4.1) 

where p satisfies (1.5). We can choose 4 so that 419 = Ati on 8 B, where the subscript ti 
denotes the tangential component. By possibly adding a O-form h satisfying the Poisson 
problem 

6 dh = -84, in B, 

hg = 0, onaS, 

we can construct a new 1 -form & = 4 + dh satisfying (4.1) and the constraint S$ = 0. In 
the sequel we shall assume that this has been done and suppress the tilde. 

It is demonstrated in the proof of Theorem 2.1 that 4 satisfies the inequality 

s 
I d@ - (d@),,,12 * 1 5 Crn+2Y (4.2) 

B, 00 ) 

for y E (O,l] and xu an arbitrary interior point of M. The Holder continuity of d$ follows 
from (4.2) by Theorem 2.5. 
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We initially compare dA and d4 in a ball B, of radius r centered at the origin of coordinates 
in M. (Inequalities (1.5) and (3.4b) imply that condition (A) of [ 1 l] is satisfied by 4.) 

Lemma 4.1. Vr E (0, l), 

ProoJ: Use Theorem 2.3 to make a continuous gauge transformation in B to a Hodge gauge. 
Eqs. (1.4) and (4.1) imply that in B 

s (A - @,SMQ(FA))FA - P(Q(W)) WI) * 1 
B 

= 
s 

(A - 4. * [A, * P(Q(FA))FAI) * 1. 

B 

(4.3) 

We use Green’s Theorem in the form 

s 
(du,u)*l- (u,Su)*l= 

s s 
1119 A UN, (4.4) 

B B fJB 

where u is a p-form, u is a (p - 1)-form, and UN = (*u)8. Applying (4.4) to (4.3) yields, 
using the boundary condition for (4. l), 

s (d(A - $),P(Q(FA))FA - p(Q(W)) d4) * 1 

B 

= 
s 

(A - 4, * [A, * P(Q(FA))FAI) * 1. (4.5) 

B 

Now apply Lemma 2.2 to the left-hand side of Eq. (4.5), taking p = FA, u = d4, and 
c=q=x.Weobtain 

Ql /(d(A - $), (FA -de)) * 1 I 1 [(A - 4, * [A * P(Q(FA))FAI) * 11, 
B B 

or 

QI s MA - @),d(A - +I) * 1 
B 

I //(A-A *[A *~(Q(FA))FAl)*l~+Hzl~(d(A-~),A~A)*ll. 

B B 

Here 81 and 02 are the constants of Eq. (3.14). 
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81 s I dA - M2 * 1 5 ‘%)iiFAi/L”(B) s IA - 4llAl * 1 

R B 

+ ‘h(li dAlkv) + II d$llLyB)) s 
IAl * 1. (4.6) 

B 

But 

s 
IA - MAI * 1 I E -’ 

s 
IAl * 1 +c 

s 
IA - c$12 * 1 

B B B 

<E -’ - 
s 

IAl2 * 1 + C@12”’ 
s 

IV(A - @I2 * 1 

B B 

< t-1 - s IAl2 * 1 + CEIB]~‘~ 
s 

JdA - d@12 * 1. (4.7) 

B B 

In (4.7) we have used the Poincare and Gaffney-Garding inequalities and we have taken 
into account the fact that A and 4 are d-coclosed and equal on a B. (Compare (4.7) with the 
first few lines in the proof of [ 16, Lemma 2.51.) Substituting (4.7) into (4.6) yields 

191 
s 

IdA- d@12*1 

B 

i CIIFAIIL~(B) c -’ 
s 

]A]2*1+~]B]2’” IdA-d412*l 
s 

B B 

+02(11 dAIlLyB) + Il d#llLyB)) 
s 

IAl x 1. (4.8) 

B 

Resealing (4.8) by the conformal transformation x + YX, 0 < r < 1, yields 

(I-Ccr4) 
s 

]dA- d@12*l SC 
s 

IAl2 * 1. (4.9) 

& &- 

Choose an exponential gauge. Apply inequality (2.1) on B, and integrate to obtain 

s 
IAl2 * 1 5 C’2+nllFAIILOo(B,)~ (4.10) 

& 

Substituting (4.10) into (4.9) proves the lemma. 0 

Since the mean value (dA),,u of dA on B, minimizes the functional 

E, E 
s 

IdA -c12* 1 

& 

over all constant 2-forms c, we have, using Lemma 4.1, 
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B, 
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WUr,ol* * 1 i 
s 

I dA - W)r,ol* * 1 

6 

391 

< _ 
s 

]dA - d4]** 1 + 
s 

I d@ - (Wrd * 1 
6 & 

5 c(p+* + p+*q 5 fy+*y, (4.1 I ) 

(Alternatively, we could have replaced (dA),.o by a solution of a variational problem for 
the functional E,.. An argument along these lines is constructed in Section 4 of [ 1 11.) 

We would like to repeat estimate (4.11) over domains B,(Q) E M such that x0 # 0. 
The obstruction to doing this is the choice of gauge, since we have used estimate (2.1). In 
order to apply (4.11) on B, (x0) we must show that the gauge transformations are close to 
the identity in the Campanato semi-norm: 

+O(.f: r,xo) = II.f - (f)r.loIIL~. 

Lemma 4.2. Zf x E B,(a) and g E G is a map such that g(A) satis$es (1.4), then 

IIK’(x) dA(x)g(x) - W’(x) dA(x)g(x>)r,o IIL~(B,(~)) 5 CrS 

for some B > 0. 

Proo$ We can estimate (g-’ (x) dA(x)g(x)),, by g-’ (a)(dA(x))g(a). Since g is unitary, 

In1 - n2l= IK’WAgC4 - g-‘(cWWdl~2 
= IIdA - gWg-’ (4 dAg(dg-‘(x)llp 
= Ild&(+%-‘(a) - &)g-‘(4 dAll,z 
= IldA(g(x)g-‘(4 - 1) + (1 - g(x)g-‘(4hWLs, 

where I is the identity transformation. Thus 

I~I - n2l I 2lldAll~~lls(x)g-‘(a) - 111~2 

= 2lldAIIL”Ilg(x) - gb)llLz. 

But 

lIdgIlL I llAllLz + IlgAllLz 5 Cr, 

where gA is the image of A under g and the constant C depends on the Loo-norm of F (see 
the proof of [ 16, Lemma 2.41,). 

We have shown that for x sufficiently close to 0, i.e., for r sufficiently small 

Ils-‘(x)dA(x)g(x) - (g-‘(x) dA(x)g(x))r,o IILqB,(cr)) I Cr, 

which proves the lemma. 0 
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Lemma 4.2 allows us to apply the arguments leading to (4.11) on B,(a), where r is 
sufficiently small and D is arbitrary in M. In this way the estimates of this section extend to 
the interior of M by a covering argument. We conclude from Theorem 2.5 that dA is Holder 
continuous. Thus, FA is as well. 

This completes the proof of Theorem 1.1. 
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